On the Convergence of Inexact Newton Methods
نویسندگان
چکیده
A solid understanding of convergence behaviour is essential to the design and analysis of iterative methods. In this paper we explore the convergence of inexact iterative methods in general, and inexact Newton methods in particular. A direct relationship between the convergence of inexact Newton methods and the forcing terms is presented in both theory and numerical experiments.
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملOn Semilocal Convergence of Inexact Newton Methods
Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...
متن کاملLocal Convergence Theory of Inexact Newton Methods Based on Structured Least Change Updates
In this paper we introduce a local convergence theory for Least Change Secant Update methods. This theory includes most known methods of this class, as well as some new interesting quasi-Newton methods. Further, we prove that this class of LCSU updates may be used to generate iterative linear methods to solve the Newton linear equation in the Inexact-Newton context. Convergence at a ¡j-superlin...
متن کاملOn Semilocal Convergence of Inexact Newton
Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...
متن کاملGlobally Convergent Inexact Newton Methods
Inexact Newton methods for finding a zero of F 1 1 are variations of Newton's method in which each step only approximately satisfies the linear Newton equation but still reduces the norm of the local linear model of F. Here, inexact Newton methods are formulated that incorporate features designed to improve convergence from arbitrary starting points. For each method, a basic global convergence ...
متن کامل